122 research outputs found

    A Search For Supernova Remnants in The Nearby Spiral Galaxy M74 (NGC 628)

    Get PDF
    We have identified nine new SNR candidates in M74 with [S II]/Hα\alpha ≥\geq 0.4 as the basic criterion. We obtain [S II]/Hα\alpha ratio in the range from 0.40 to 0.91 and Hα\alpha intensities from 2.8 ×\times 10−1510^{-15} erg cm−2^{-2} s−1^{-1} to 1.7 ×\times 10−1410^{-14} erg cm−2^{-2} s−1^{-1}. We also present spectral follow-up observations of the SNR candidates and can confirm only three of them (SNR2, SNR3, and SNR5). The lack of confirmation for the rest might be due to the contamination by the nearby H II emission regions as well as due to the inaccurate positioning of the long slit on these objects. In addition, we search the ChandraChandra Observatory archival data for the X-ray counterparts to the optically identified candidates. We find positional coincidence with only three SNR candidates, SNR1, SNR2, and SNR8. The spectrum of SNR2 yields a shock temperature of 10.8 keV with an ionization timescale of 1.6 ×\times 1010^{10} s cm−3^{-3} indicating a relatively young remnant in an early Sedov phase which is not supported by our optical wavelength analysis. Given the high luminosity of 1039^{39} erg s−1^{-1} and the characteristics of the X-ray spectrum, we favor an Ultra Luminous X-ray Source interpretation for this source associated with an SNR. We calculate an X-ray flux upper limit of 9.0 ×\times 10−1510^{-15} erg cm−2^{-2} s−1^{-1} for the rest of the SNRs including spectroscopically identified SNR3 and SNR5.Comment: 10 pages, 8 figures, accepted to be published in A&

    X - Ray Flares and Their Connection With Prompt Emission in GRBs

    Full text link
    We use a wavelet technique to investigate the time variations in the light curves from a sample of GRBs detected by Fermi and Swift. We focus primarily on the behavior of the flaring region of Swift-XRT light curves in order to explore connections between variability time scales and pulse parameters (such as rise and decay times, widths, strengths, and separation distributions) and spectral lags. Tight correlations between some of these temporal features suggest a common origin for the production of X-ray flares and the prompt emission.Comment: 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013: paper 15 in eConf Proceedings C130414

    Possible optical counterparts of ULXs in NGC 1672

    Full text link
    In this study, we use archival data from HST, Chandra, XMM-Newton, and Swift-XRT, to probe the nature of 9 (X1-X9) candidate ULXs in NGC 1672. Our study focuses on using the precise source positions obtained via improved astrometry based on {\it Chandra} and HST observations to search for and identify optical counterparts for these ULXs.Unique optical counterparts are identified for X2 an{d X6; two potential counterparts were determined for X1, X5 and X7 within the respective error radii while no optical counterparts were found for the remaining four sources. Based on spectral energy distributions (SEDs), X-ray and optical temporal analyses, some evidences about the nature of X1 and X2 were obtained.Comment: To appear in Astronomische Nachrichten / Astronomical Notes (AN). arXiv admin note: substantial text overlap with arXiv:2207.0630

    A Proposal to Localize Fermi GBM GRBs Through Coordinated Scanning of the GBM Error Circle via Optical Telescopes

    Get PDF
    We investigate the feasibility of implementing a system that will coordinate ground-based optical telescopes to cover the Fermi GBM Error Circle (EC). The aim of the system is to localize GBM detected GRBs and facilitate multi-wavelength follow-up from space and ground. This system will optimize the observing locations in the GBM EC based on individual telescope location, Field of View (FoV) and sensitivity. The proposed system will coordinate GBM EC scanning by professional as well as amateur astronomers around the world. The results of a Monte Carlo simulation to investigate the feasibility of the project are presented.Comment: 2011 Fermi Symposium proceedings - eConf C11050

    Study of Envelope Velocity Evolution of Type Ib-c Core-Collapse Supernovae from Observations of XRF 080109 / SN 2008D and GRB 060218 / SN 2006aj with BTA

    Full text link
    Results of modeling the spectra of two supernovae SN 2008D and SN 2006aj related to the X-ray flash XRF 080109 and gamma-ray burst GRB / XRF 060218, respectively, are studied. The spectra were obtained with the 6-meter BTA telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences in 6.48 and 27.61 days after the explosion of SN 2008D, and in 2.55 and 3.55 days after the explosion of SN 2006aj. The spectra were interpreted in the Sobolev approximation with the SYNOW code. An assumption about the presence of envelopes around the progenitor stars is confirmed by an agreement between the velocities of lines interpreted as hydrogen and helium, and the empiric power-law velocity drop with time for the envelopes of classic core-collapse supernovae. Detection of a P Cyg profile of the H-beta line in the spectra of optical afterglows of GRBs can be a determinative argument in favor of this hypothesis.Comment: 12 pages, 6 figures, accepted for publication in Astrophysical Bulletin

    The Hurst Exponent of Fermi GRBs

    Full text link
    Using a wavelet decomposition technique, we have extracted the Hurst exponent for a sample of 46 long and 22 short Gamma-ray bursts (GRBs) detected by the Gamma-ray Burst Monitor (GBM) aboard the Fermi satellite. This exponent is a scaling parameter that provides a measure of long-range behavior in a time series. The mean Hurst exponent for the short GRBs is significantly smaller than that for the long GRBs. The separation may serve as an unbiased criterion for distinguishing short and long GRBs.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Societ
    • …
    corecore